Author for correspondence:

Tel: +44 (0)114 222 4359

Fax: +44 (0)114 222 0002 Email: d.j.beerling@sheffield.ac.uk

Accepted: 17 September 2001

Received: 30 July 2001

David Beerling

Research review

Reading a CO₂ signal from fossil stomata

D. J. Beerling¹ and D. L. Royer^{2,3}

¹Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK; ²Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520-8109, USA; ³Present address, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

Summary

Key words: atmospheric CO₂, environment, fossils, genotype, palaeoclimate, palaeobotany, phenotype, stomata. The inverse relationship between atmospheric CO₂ and the stomatal index (proportion of epidermal cells that are stomata) of vascular land plant leaves has led to the use of fossil plant cuticles for determining ancient levels of CO₂. In contemporary plants the stomatal index repeatedly shows a lower sensitivity atmospheric CO₂ levels above 340 ppm in the short term. These observations demonstrate that the phenotypic response is nonlinear and may place constraints on estimating higher-than-present palaeo-CO₂ levels in this way. We review a range of evidence to investigate the nature of this nonlinearity. Our new data, from fossil *Ginkgo* cuticles, suggest that the genotypic response of fossil *Ginkgo* closely tracks the phenotypic response seen in CO₂ enrichment experiments. Reconstructed atmospheric CO₂ values from fossil *Ginkgo* cuticles compare well with the stomatal ratio method of obtaining a quantitative CO₂ signal from extinct fossil plants, and independent geochemical modelling studies of the long-term carbon cycle. Although there is self-consistency between palaeobiological and geochemical CO₂ estimates, it should be recognized that the nonlinear response is a limitation of the stomatal approach to estimating high palaeo-CO₂ levels.

© New Phytologist (2002) 153: 387-397

Introduction

With remarkable perception, Arrhenius (1896) postulated that past variations in atmospheric CO_2 were responsible for the major changes in climatic conditions recorded by rocks and fossils, following his quantification of the greenhouse effect by CO_2 molecules (i.e. absorption of outgoing longwave radiation from the Earth's surface). The proposal was formulated in further detail by Chamberlin (1898) who considered at length the regulation of CO_2 on geological time-scales in relation to source–sink behaviour. This fundamental concept underpins much of palaeoclimatalogy and identified early on the critical requirement for determining historical changes in the concentration of CO_2 in the atmosphere. For the late Quaternary (past 400 000 yr), this objective has been well achieved through studies of ice-core records of atmospheric CO₂ (Petit *et al.*, 1999) particularly in Antarctica where artefacts associated with chemical reactions in the ice are less likely to affect measured CO₂ levels (Fischer *et al.*, 1999; Monnin *et al.*, 2001). Coupled with isotopic measurements on the ice, analyses of ice cores have shown that CO₂ oscillated between 180 and 280 ppm in 100 000 years cycles, in phase with changes in temperature (Petit *et al.*, 1999; Shackleton, 2000). An interesting feature of the high resolution analyses of the millennial palaeoclimate records is that a change in air temperature can apparently occur quite rapidly without changes in CO₂, whereas the converse has not yet been seen to occur (Falkowski *et al.*, 2000).

For back in time, in the pre-Quaternary, alternative approaches are required for determining the past history of atmospheric CO₂ (Royer et al., 2001a) because the world's oldest ice sheets only date back c. 500 000 yr. The approaches can be divided into two groups. One group is based on geochemical modelling of the carbon cycle at multimillion year time-scales and invokes volcanism and metamorphism to supply CO₂, and tectonic uplift and silicate rock weathering, accelerated by the biota, to remove it (Berner, 1994, 1997; Tajika, 1998; Berner & Kothavala, 2001; Wallmann, 2001). The other group is the proxy (indirect) geochemical and palaeobiological indicators of CO2. Comparison of predicted CO₂ variations from carbon cycle modelling and the various proxies shows a good first-order agreement over the past 550 Myr (Crowley & Berner, 2001; Royer et al., 2001a) with episodes of low CO₂ coinciding with evidence for continental glaciation (Crowley & Berner, 2001). In addition, calculated reductions in CO2-related radiative forcing, as CO2 levels declined from the Cretaceous onwards, correlate well with changes in oceanic temperature inferred from the deep-sea oxygen isotope ratios of foraminifera. This close correspondence suggests that, at least at a very coarse level, our confidence in the relationship between atmospheric CO2 and global temperatures remains intact, over the 100 yr since it was proposed (Arrhenius, 1896; Chamberlin, 1898).

Most recently, a long-term (550 Myr) reconstruction of tropical sea surface temperatures (SSTs) has cast doubt on the link between climate and CO₂ at certain times during the Phanerozoic (Veizer et al., 2000). Reconstructing SSTs from the oxygen isotope composition of tropical marine fossil organisms, Veizer et al. (2000) identified anomalously low values during the Mesozoic, a time when geochemical models and proxy evidence indicate atmospheric CO₂ concentrations were up to sixfold higher than they are now (Berner, 1997; Crowley & Berner, 2001; Royer et al., 2001a). Radiative forcing by such palaeo-CO2 concentrations is calculated to have been sufficient to raise global temperatures by 4-8°C, in agreement with the lack of evidence for substantial ice sheets at this time (Crowley & Berner, 2001). Reconciling these differences remains a major task and prompts the need to critically re-examine not only the interpretation of the oxygen isotopic measurements themselves but also the different approaches for reconstructing CO_2 in deep time.

Stomata as indicators of palaeo-CO₂ levels

In the context of the present Stomata 2001 meeting, this review focuses on the stomatal approach (Beerling & Chaloner, 1994; McElwain *et al.*, 1999; Rundgren & Beerling, 1999; Royer *et al.*, 2001b) to estimating palaeo- CO_2 levels using fossilized leaves of land plants. However, it should be recognized that three geochemical palaeo- CO_2 proxies based on the carbon isotopic composition of fossil soils (Cerling, 1991, 1992; Ekart *et al.*, 1999) and phytoplankton (Freeman & Hayes, 1992; Pagani et al., 1999), and the boron isotope composition of planktonic foraminifera (Pearson & Palmer, 2000) exist in addition to this palaeobotanical one. The potential to detect changes in atmospheric CO₂ from fossil stomata derives from the original observations of Woodward (1987), who demonstrated that both stomatal density (number of stomata per unit area of leaf) and stomatal index (percentage of leaf epidermal cells that are stomata) were inversely related to atmospheric CO₂ level during leaf development. Although both density and index respond to CO₂, stomatal index is rather insensitive to changes in soil moisture supply, atmospheric humidity and temperature (Beerling, 1999) making it a more suitable indicator of palaeo-CO₂ changes. By comparison, stomatal density is quite susceptible to fluctuations in the growing environment, being directly related to leaf expansion, with the consequence that it is a less reliable indictor of past CO₂ levels. This review therefore considers only the use of stomatal index as a CO₂ indicator.

Numerous studies have attempted to exploit the stomatal responses of leaves to CO2 by using the fossil record of plant cuticles to determine palaeo-CO2 levels (reviewed in Royer et al., 2001a), with several extending the time-scale back beyond 300 Myr (McElwain & Chaloner, 1995; McElwain, 1998; Retallack, 2001). Perhaps the strongest evidence yet that an atmospheric CO₂ signal can genuinely be retrieved in this way comes from the work of Rundgren & Beerling (1999). These authors produced a high-resolution record of atmospheric CO₂ changes spanning the past 9000 yr using a transfer function and measurements of stomatal index made on a radiocarbon dated sequence of fossil *Salix herbacea* leaves from Swedish lake sediments (Fig. 1a). The resulting reconstruction displayed a remarkable similarity to the CO₂ record derived from the Taylor Dome Antarctic ice core study (Fig. 1b) (Indermühle et al., 1999). Both approaches showed a gradual increase in atmospheric CO₂ during the Holocene with an oscillation around 500 radiocarbon years before present (Fig. 1). Together, these CO₂ records indicate that the global carbon cycle has not apparently been in steady-state over Holocene, a time of relative climatic stability compared with the last glacial period (Ditlevsen et al., 1996).

A critical area of uncertainty in the use of fossil stomata in this way is the nonlinear response of stomatal index to atmospheric CO₂ concentrations above present-day levels (Woodward, 1987; Woodward & Bazzaz, 1988; Beerling & Chaloner, 1993; Royer *et al.*, 2001b). This effect undermines the ability of the technique to quantitatively reconstruct high palaeo-CO₂ levels during the early Tertiary and Mesozoic, the very times when there is a major discrepancy between low latitude SSTs (Veizer *et al.*, 2000) and the CO₂ history of the atmosphere (Crowley & Berner, 2001). Therefore, this review focuses on the nature of this apparent 'ceiling' of response by examining evidence from a range of different experiments, natural CO₂ settings and fossil materials. From these analyses, we explore the potential to develop an alternative transfer

Fig. 1 Atmospheric CO₂ trends over the past 7000 yr of the Holocene (a) reconstructed from fossil leaves in Swedish lake sediments at 999 m above sea level and (b) from the Taylor Dome, Antarctic, ice core. Note that the reconstructed CO₂ partial pressures in (a) have not been converted to concentration because this assumes that total atmospheric pressure has not changed over the Holocene, an assumption difficult to test. Redrawn from Rundgren & Beerling (1999).

function for calibrating fossil cuticle records of *Ginkgo* stomatal index and its consequences for reconstructing palaeo- CO_2 levels for part of the Tertiary (Royer *et al.*, 2001b). We also take the opportunity to use the updated observational datasets of *Ginkgo* to test earlier suggested calibration functions for reconstructing palaeo- CO_2 levels from the stomatal characteristics of extinct plants (McElwain & Chaloner, 1995; Chaloner & McElwain, 1997; McElwain, 1998). To independently test the various CO_2 reconstructions, the results are compared against CO_2 estimates from palaeosols (Ekart *et al.*, 1999) and predictions from models of the long-term global carbon cycle (Tajika, 1998; Berner & Kothavala, 2001; Wallmann, 2001).

The nonlinear response of stomatal index to atmospheric CO₂

Historically, the nonlinear nature of the response was slow to emerge. The first experiments addressing the effects of CO_2 on leaf stomatal index were conducted in an atmosphere

Fig. 2 Responses of stomatal index of (a) *Metasequoia glyptostroboides* and (b) *Ginkgo biloba* to atmospheric CO_2 changes as determined from herbarium leaves (closed circles) and experiments (open circles with solid centres). In (b) open squares denote results from plants that were 5 yr old at the start of the experiment. Redrawn from Royer *et al.* (2001b) with new data for the second year of treatment. The fitted curve in (a) is given by Royer *et al.* (2001b), in (b) it corresponds to Eqn 2a in Table 3.

enriched with CO₂ up to 1000 ppm (Madsen, 1973; Thomas & Harvey, 1983). Those experiments hinted at a possible low sensitivity of stomatal index because only one of the two species investigated (Lycopersicon esculentum) (Madsen, 1973) showed a decline. It was not until experiments with subambient CO₂ concentrations were undertaken, and observations made on herbarium materials collected over the last two centuries of CO2 increase (Woodward, 1987; Woodward & Bazzaz, 1988), that the differential sensitivity of stomatal index to CO₂ became apparent. In an extensive review of experimental studies (CO₂ exposure time ranged from 2 weeks to 5 years), stomatal index responded to elevated CO₂ in 29% of the cases (n = 65 studies) whereas to subambient CO₂ it responded in 50% of the cases (n = 18 studies) (Royer, 2001). The striking loss of CO2 sensitivity of stomatal index at CO2 concentrations above 350 ppm is well demonstrated by combining detailed analyses of historical collections of herbarium leaves with results from controlled environment growth experiments for two ancient plant taxa (Metasequoia glyptostroboides and Ginkgo biloba) (Fig. 2) (Royer et al., 2001b). The linear portions

	CO ₂ treatment					
anova comparison	Ambient (440 p.p.m)	Elevated (800 ppm)				
Treatment year 1 Younger vs older plants	$F_{1,70}, P = 0.94$	$F_{1,67}, P = 0.20$				
Treatment year 2 Younger vs older plants	$F_{1,46}, P = 0.60$	$F_{1,46}, P = 0.20$				
Older plants Year 1 vs year 2 responses	$F_{1,70}, P = 0.04$	$F_{1,70}, P = 0.44$				
Younger plants Year 1 vs year 2 responses	$F_{1,46}, P = 0.02$	$F_{1,43}, P = 0.57$				

Table 1Results of analysis of variance(ANOVA) testing for CO_2 effects on thestomatal index of *Ginkgo* leaves in relation toplant age and duration of exposure

F-values are given with the degrees of freedom for the CO_2 treatment and the residual effects, respectively. Younger plants and older plants were 1-yr-old and 5-yr-old-saplings, respectively, during the first year of treatment.

of the curves show that *Metasequoia* and *Gingko* reduced their leaf stomatal index by approximately 50% and 30%, respectively, as the CO_2 concentration rose from 280 to 300 ppm at the onset of preindustrial era to the more recent range of 340–360 ppm Above this CO_2 threshold, the response was less steep, with a 15–10% drop between 400 ppm and 800 ppm. CO_2 shown by plants in experiments (Royer *et al.*, 2001b).

One potentially important factor influencing the response of stomatal index to high CO₂ levels is the age of the plants themselves (Tichá, 1982). To test for this possibility, we compared the stomatal index responses of *Ginkgo biloba* saplings of different ages (1 yr and 5 yr old at the start of the experiment) to CO₂ enrichment under the same polar light (high latitude, 69° N) regime (Beerling & Osborne, 2002). In the case of the 5-yr-old plants, this material had a history of exposure to elevated CO₂ (560 ppm) in the previous 4 yr (Beerling *et al.*, 1998). Analysis of variance (Table 1) indicated no significant

Fig. 3 Effects of plant age and duration of treatment on the response to stomatal index to atmospheric CO_2 enrichment. Open bars, ambient $CO_2 \approx 400$ ppm; shaded bars, elevated $CO_2 \approx 800$ ppm. All plants showed a significant (P < 0.01) reduction in stomatal index in response to growth in elevated CO_2 . Plant age had no effect on the strength of the response, while duration of exposure influenced the control *Gingko* plants under ambient CO_2 conditions (see Table 1).

differences between the stomatal responses of the two groups of saplings differing in age (Fig. 3). There was, however, a significant reduction in the stomatal indices of control *Ginkgo* plants, but not *Metasequoia* during the second year of treatment (Table 1, Fig. 3). These results suggest that for *Ginkgo* at least, the age of the plant may not play a major role in determining the extent to which stomatal index is reduced under high CO₂.

An interesting feature of the differential sensitivity of stomatal index to CO_2 is its greater variability at sub-ambient CO_2 levels compared with that observed at above ambient CO_2 levels (Fig. 4). Comparisons across different plant groups (temperate trees, grasses, herbs, shrubs and ancient woody plant taxa) indicate this seems to be quite a general trend (Fig. 4). A similar phenomenon, whereby plants exhibit

Fig. 4 Relative changes in stomatal index to CO_2 for a range of different plant groups, including data from modern tree, herb and shrub species (closed circles) (from Woodward & Bazzaz, 1988), and a range of more ancient so-called 'living fossil' taxa: open circles, *Metasequoia glyptostroboides*; closed triangles, *Ginkgo biloba*; plus signs, *Araucaria araucana*; open triangles, *Sequoia sempervirens*. Data for *M. glyptostroboides* and *G. biloba* are from Fig. 2b, data points for *A. auracana* and *S. sempervirens* at 440 ppm and 800 ppm CO_2 were obtained from an on-going CO_2 enrichment experiment (D.J. Beerling, unpublished).

wide variety of responses at low CO_2 , that becomes lost at high CO_2 , has been reported for herbaceous taxa (Tissue *et al.*, 1995; Ward & Strain, 1997). Such large differences in the variability of plants to different CO_2 levels may relate to the long-term history of CO_2 exposure and the potential for CO_2 to act as a selective agent. Ice-core records of atmospheric CO_2 indicate that plants experienced a preindustrial concentration of 280–300 ppm for the last 10 000 years (Neftel *et al.*, 1988; Indermühle *et al.*, 1999) and glacial–interglacial values of 180 ppm and 280 ppm for the last 400 000 Myr (Petit *et al.*, 1999), and possibly longer. These rather long timescales clearly indicate the possibility that plants have evolved and optimized a range of physiological, morphological and growth processes to low CO_2 levels.

Indeed, detailed analyses of the processes controlling photosynthesis (Lloyd et al., 1995; Lloyd & Farquhar, 1996; Mitchell et al., 2000) indicate the 'ghost' effects of this former lower-than-present CO₂ regime. Plants grown at CO₂ concentrations of 300-350 ppm, under saturating irradiance, generally show colimitation of photosynthetic CO₂ uptake by the capacity of Rubisco to catalyse CO₂ fixation in the photosynthetic carbon reduction cycle (carboxylation) and the capacity of the light-harvesting/electron-transport systems to regenerate Ribulose biphosphate (RuBP). This feature of modern plants with the C3 photosynthetic pathway corresponds to an optimal distribution of chloroplastic nitrogen between RuBP carboxylation and RuBP regeneration. Under different growth conditions (e.g. lower irradiance), plants tend to adjust their nitrogen partitioning to maintain this colimitation in an effort to maximize carbon gain with respect to leaf nitrogen content. Experimental evidence, however, indicates that during exposure to elevated CO₂ concentrations, chloroplastic nitrogen allocation to the two control processes (RuBP carboxylation and regeneration) shows little change (Lloyd & Farquhar, 1996). On exposure to atmospheric CO₂ levels above 350 ppm, therefore, the control of photosynthesis may no longer be optimal in terms of nitrogen investment with respect to carbon gain. It is interesting to note that even the annual crop wheat, in which selection for high productivity is strongly directed, and which evolved only recently, has a photosynthetic system adapted to the preindustrial CO2 concentration (Mitchell et al., 2000). At the other extreme of plant longevity, analyses of CO₂ flux data from extensive field measurement campaigns in the Amazonian tropical rainforest indicate that these long-lived trees also exhibit a photosynthetic physiology and nitrogen investment adjusted for optimum carbon gain at a preindustrial CO₂ concentration of 270 ppm (Lloyd et al., 1995).

These observations suggest that the high variability of plant responses to subambient CO_2 concentrations (Fig. 4) may directly reflect CO_2 selection and adaptation to Holocene CO_2 levels (260–290 ppm, Fig. 1). Alternatively, the rather restricted responses shown by plants to above-ambient CO_2 levels may reflect the limited potential for high CO_2 to act as

a selective agent (Fig. 4). In multiple generation experiments with the annual *Arabidopsis thaliana*, Ward *et al.* (2000) reported that low CO_2 (200 ppm) acted as an effective selective agent for seed production whereas a high CO_2 concentration (700 ppm) failed to operate in this way. If current plant genotypes are strongly preadapted to preindustrial CO_2 levels, and take a long time to evolve, the stomatal responses observed in CO_2 enrichment experiments possibly reflect the lack of genetic variability arising from the short-term nature of the experiments (Beerling & Chaloner, 1993; Royer, 2001).

Evidence from plants exposed to high CO₂ in the long-term

It follows from this discussion that assessment of the evolutionary (genotypic) response of stomatal index to high CO₂ requires observations encompassing an appropriately long duration of exposure. One approach to dealing with this issue has been to use plants growing naturally in the vicinity of CO₂-enriched geothermal springs (Raschi et al., 1997), with the notion that the vegetation has grown in a high CO₂ environment in the long-term (decadal or longer) and therefore exhibits an adaptive (rather than acclimatory) response. Bettarini et al. (1998) compared the stomatal indices of 17 species of grasses, herbs and trees growing in an Italian high-CO₂ spring (Bossoleto) with the same species at control sites with similar soils and climate but without elevated CO₂. Historical records indicate that CO₂ emissions at Bossoleto have occurred for the past two centuries. Taken at face value, the results (Fig. 5) show rather little consistent change in the stomatal indices of the two groups of plants suggesting that with this extended level of exposure to elevated CO₂, an apparent ceiling to above-ambient CO₂

Fig. 5 Response to stomatal index of 17 species of trees (triangles), herbs (open circles) and grasses (closed circles) to CO_2 enrichment in the long term, as determined from the Bossoleto high- CO_2 spring in Italy (data from Bettarini *et al.*, 1998). The solid line indicates the 1 : 1, the dashed line indicates the fitted regression to the data, with a slope not significantly different from unity.

levels remains. No particular differences in the responsiveness between life forms (trees, herbs and grasses) with different generation times were observed (Fig. 5). An exception to this trend is the remarkable reduction in stomatal index (73–85%) of a subtropical herb and a tree species from cold CO_2 springs in Venezuela (Fernandez *et al.*, 1998). In this example the plants experienced very high CO_2 concentrations (27 000–35 000 ppm) for an unknown duration.

Observations from plants at Bossoleto appear to support the responses of plants shown in CO_2 enrichment experiments (Figs 2 and 3), but there are difficulties associated with using high- CO_2 springs in this manner. In particular, convective activity during the day can disturb the boundary layer at the sites, resulting in greater mixing and dilution of the CO_2 emissions and, as plants increase in height, the different organs are exposed to different degrees of CO_2 enrichment. There is also a need to recognize that the sites are usually not genetically isolated, so that cross-fertilization (and dilution of any CO_2 selection) may take place from plants outside the springs. Moreover, exposure to elevated CO_2 for two centuries represents one or possibly two generations for trees, with little potential for an adaptive response to be expressed.

From observations in the Amazon (Lloyd *et al.*, 1995), it seems that even 10 000 years might not be sufficient time to allow natural selection to operate during an altered CO₂ regime. Given this clue about the length of time required for adaptation to high CO₂ to occur, we sought to assess the response of stomatal index to atmospheric CO₂ of *Ginkgo* on a multimillion year time-scale. To achieve this aim, we identified sites in which fossil *Ginkgo* cuticles were well preserved and reasonably abundant (Royer *et al.*, 2001b) and which had pedogenic carbonate isotope (δ^{13} C) data (Koch *et al.*, 1992, 1995) from geographically and stratigraphically nearby sites. Stratigraphically, all of the palaesol sites were within 15 m (*c.* 30 000 yr) of the cuticle-bearing sites and allowed us to generate independent atmospheric CO₂ estimates using the palaeosol CO_2 barometer (Cerling, 1991, 1992). In total, six early Palaeogene North American sites were identified (Table 2) fulfilling these criteria and which gave CO_2 estimates within the range of our training set; all had reasonably good age control (Wing *et al.*, 2000). For all sites, we used fossils of *Ginkgo adiantoides*, a taxon with close morphologically similarity to *Ginkgo biloba* (Tralau, 1968).

At each site, atmospheric CO₂ was calculated from the carbon isotope composition of pedogenic carbonates (δ_{cc}) and *Ginkgo* cuticles (δ_p) using the diffusion-reaction model of Cerling (1991, 1992). According to the model, these quantities can be used to estimate atmospheric CO₂ concentration (C_a in ppm) from:

$$C_a = S(z) \times \frac{\delta - 1.0044 \times \delta_{\phi} - 4.4}{\delta_a - \delta_s}$$
 Eqn 1

where S(z), is the concentration of CO₂ contributed by biological respiration (typically 5000 ppm for well-drained arid–semiarid soils); δ_{a} , is the isotopic composition of atmospheric CO₂, taken from marine carbonate records with a 7‰ negative offset (-6.5‰ for the late Palaeocene-early Eocene); and δ_{φ} , the isotopic composition of soil respired CO₂ assumed to equal δ_p (Table 2). Soil carbonate isotopic composition (δ_{cc}) is assumed, under equilibrium conditions, to equal the isotopic composition of soil CO₂ (δ_s) with a temperature-dependent fractionation (*c.* +10‰ at 25°C). It should be emphasized that the error terms for the CO₂ estimates are large (Table 2) and were derived, according to convention, by varying *S*(*z*) between 3000 and 7000 ppm (Royer *et al.*, 2001a).

The large error term in the CO_2 estimates, especially at higher CO_2 values, introduces some uncertainty in our attempt at determining the long-term response of *Ginkgo* stomatal index to CO_2 . For the range of sites investigated, atmospheric CO_2 varied between 200 ppm and 985 ppm (Table 2).

Table 2 Fossil *Ginkgo* cuticle stomatal index values and corresponding independent estimates of atmospheric CO₂ calculated from soil carbonate and *Ginkgo* cuticle (δ^{13} C values using the diffusion-reaction model (Cerling, 1991, 1992)

Plant materials						Palaeosols			
Site ¹	Depth ² (m)	n leaves	Stomatal ¹ index	(δ ¹³ C (‰)	age ⁴ (Myr ago)	Site ³	depth ² (m)	(δ ¹³ C (‰)	Atmospheric CO_2 concentration (ppm) ⁵
LJH 7132	~935	5	8.8	-23.9	56.4	SC 85/185	940	-8.0	697 ± 280
SLW 9411	~1355	8	11.5	-23.8	55.6	SC 118U	1325	-8.7	329 ± 132
SLW 9434	~1460	7	12.2	-22.5	55.4	SC 22	1460	-7.7	223 ± 90
SLW 9715	1470	12	8.2	-24.2	55.3	SC 22	1460	-7.7	985 ± 394
SLW 9812	1570	22	8.5	-24.5	55.1	SC 4	1570	-8.4	760 ± 303
SLW H	~2320	9	10.2	-26.9	53.5	YPM 320	~2320	-12.0	200 ± 80

¹Stomatal index data and site details from Royer *et al.* (2001b). ²Depth in section from Polecat Bench/Clarks Fork Basin, where the Cretaceous– Tertiary boundary 65 Myr ago = 0 m. Values preceded by ~ were converted from the Elk Creek section. ³From Koch *et al.* (1995), except YPM 320 which is from Royer *et al.* (2001b). ⁴From the Age Model 2 of Wing *et al.* (2000). ⁵Calculated using the palaeosol pCO_2 model of Cerling (1991, 1992); error estimates were obtained by varying *S*(*z*) between 3000 and 7000 ppm.

Fig. 6 Comparison of the response of leaf stomatal index determined from fossil *Ginkgo* cuticles over 3 Myr to CO_2 concentrations estimated from palaeosol carbonates (see Table 2) with data from herbarium leaves and experiments (from Fig. 2b). The fitted solid curve is that given in Fig. 2(b), the dashed curve is fitted to the entire dataset (Eqn 3a in Table 3).

Nevertheless, within this uncertainty, the new dataset shows an inverse relationship between the stomatal index and the estimated concentration of atmospheric CO_2 under which they grew (Fig. 6). The two end-member stomatal index– CO_2 concentrations are separated by 2 Myr (Table 2), whilst the entire dataset spans 3 Myr. The fossils therefore extend the duration of exposure seen in high CO_2 springs by a factor of $c. 10^4$. From this standpoint, the dataset encompasses a sufficient time with which to observe a genotypic response (i.e. adaptive) to the different levels of CO_2 (Beerling & Chaloner, 1993).

It emerges that the response of fossil leaf stomatal index to CO₂ fits into the existing calibration dataset based on leaves from herbarium sheets and experiments (Fig. 6). This seems to indicate that the short-term phenotypic CO₂ response seen in experiments realistically reflects the sensitivity of the genotypic response. The implication here is that the nonlinear nature of the stomatal index response to CO₂ is real and likely to limit reconstruction of high (> 600 ppm) palaeo-CO₂ levels. However, at CO₂ concentrations below 300 ppm two fossil plant stomatal indices are lower than expected (Fig. 6), although determining whether this effect is real is hampered by the relative paucity of observations. Identification of a CO₂-regulated gene controlling stomatal development (Gray et al., 2000) provides a genetic basis for the action of CO_2 , and it is possible that this underpins both phenotypic and genotypic stomatal responses.

Calibrating a CO₂ signal from the stomata of extinct plants

All observations to date suggest the responses of the stomatal index of vascular land plant leaves with C_3 photosynthesis to atmospheric CO_2 is species-specific (Royer, 2001). Plants

growing in the same location and exposed to the same changes in CO₂ will therefore show different degrees of responsiveness. In consequence, there is a clear need to study fossil materials with close modern analogues. However, for times when fossils represent extinct plants, some other approach is required to discover if those fossils carry a CO₂ signal (McElwain & Chaloner, 1995; Chaloner & McElwain, 1997). In the Palaeozoic, this assumes that CO₂ overrides other selection pressures involved in the evolution of stomata (Edwards, 1998; Beerling et al., 2001; Raven & Edwards, 2001). Stomatal measurements on Devonian and Carboniferous plant fossils provide some evidence supporting this assumption by revealing a large (two-orders of magnitude) increase in stomatal density during the 90% drop in atmospheric CO₂ over this time (McElwain & Chaloner, 1995), indicating the potential for long-extinct plants to record palaeo-CO₂ change.

One technique for obtaining semi-quantitative CO₂ estimates is the stomatal ratio (SR), defined as the stomatal index of a nearest living morphological or ecological equivalent (or both) to the fossil plant under consideration, divided by stomatal index of the fossil plants. SR values are related to the ratio of atmospheric CO_2 in the past relative to the preindustrial (or the time when the nearest living equivalent materials were collected) (RCO₂) (Chaloner & McElwain, 1997; McElwain, 1998). For Carboniferous (Swillingtonia denticulata) and Permian (Lebachia frondosa) conifers, calibration against Berner's (1994) model predictions of CO₂ at those times gave $1SR = 2RCO_2$ (Eqn 4a, Table 3). A later analysis suggested a shift in the calibration so that $1SR = 1RCO_2$ (Eqn 5a, Table 3), given that the stomatal index of nearest living equivalents reflects a current or near-current atmospheric CO₂ level (McElwain, 1998).

In the context of the present review, it is of interest to compare the SR approach for elucidating palaeo- CO_2 trends with the more quantitative calibration functions (Table 3). This has been achieved following some simple manipulation of the equations (Table 3), to predict the response of the stomatal index of *Ginkgo* to atmospheric CO_2 change, for comparison with the two nonlinear functions derived from observations (Fig. 6). This comparison provides the first direct test of the SR approach to assess whether the degree of responsiveness set by these functions is realistic and appropriate for palaeo- CO_2 reconstructions.

The calibration of $1SR = 2RCO_2$ shows rather large discrepancies between predictions and observations (Fig. 7). Calculated using the stomatal ratio relationships, it emerges that over the CO₂ range 300–800 ppm, the $1SR = 1RCO_2$ calibration gives an approximate fit to the observations (Fig. 7). All of the various approaches converge in their predicted responses of *Ginkgo* stomatal index to high atmospheric CO₂ concentrations (Fig. 7b). At CO₂ concentrations below 600 ppm, however, the $1SR = 2RCO_2$ calibration diverges markedly from the others.

394 Review Research review

Table 3 Equations describing the response of the stomatal index (SI) of Ginkgo leaves to atmospheric CO_2 and their inverse solutions for predicting CO_2 from stomatal index

Equation		Derivation
2a	$SI = \frac{(C_a - 194.4)}{(0.16784 \times C_a) - 41.6}$	From observations on herbarium leaves and experiments (Royer <i>et al.</i> , 2001a) (Fig. 2b).
2b	$C_a = \frac{(52 \times 5I - 243)}{1049 \times 5I - 6250} \times 5000$	Inverse prediction of Eqn 2a.
3a	$SI = 7.085 + 20.73 \times \exp(-0.005538 \times C_a)$	From entire set of observations on herbarium leaves, experiments and fossil cuticles and CO ₂ estimates from palaeosols (Fig. 6, Table 2).
3b	$C_a = -180.57 \times \ln(0.048 \times SI - 0.3418)$	Inverse prediction of Eqn 3a.
4a	$\frac{SI(m)}{SI(f)} = \frac{C_a(past) \times 0.5}{C_a(present)}$	Relates the stomatal index of a fossil plant, $SI(f)$, to its modern nearest ecological equivalent, $SI(m)$ (Chaloner & McElwain, 1997). C_a (present) and C_a (past) represent atmospheric CO ₂ concentrations during the preindustrial (300 ppm) and at some time in the past, respectively.
4b	$SI = SI(m) \times 2 \times \frac{C_a(present)}{C_a}$	Predicts the response of stomatal index of <i>Ginkgo</i> to CO_2 change by solving Eqn 4a for <i>SI</i> , where <i>SI(m)</i> = 11.33 (Fig. 7).
4c	$C_a = \frac{SI(m)}{SI(f)} \times C_a(present) \times 2$	Inverse prediction of Eqn 4b.
5a	$\frac{SI(m)}{SI(f)} = \frac{C_a(past)}{C_a(present)}$	Second formulation of Eqn 4a, but calibrated assuming <i>SI(m)</i> reflects a near-present day atmospheric CO ₂ level (McElwain, 1998).
5b	$SI = SI(m) \times \frac{C_a(present)}{C_a}$	Predicts the response of stomatal index of <i>Ginkgo</i> to CO_2 change by solving Eqn 5a for <i>SI</i> , with <i>SI</i> (<i>m</i>) = 11.33 (Fig. 7).
5c	$C_a = \frac{Sl(m)}{Sl(f)} \times C_a(present)$	Inverse prediction of Eqn 5b.

 C_a = atmospheric CO₂ concentration (ppm).

Atmospheric CO₂ (ppm)

Fig. 7 Comparison of the responses of stomatal index to atmospheric CO_2 predicted by the two non-linear calibration functions derived in Figs 2b and 6, with the stomatal ratio approaches (Eqns 4b and 4b, Table 3).

Stomata and palaeo- CO_2 levels during the early Tertiary

We next compare the effects of the two different nonlinear transfer functions (Fig. 6, Table 3), and the stomatal ratio

approach, on reconstructed atmospheric CO₂ levels with fossil cuticles. We focus on 18 sites in western North American, dating to between 58.5 Myr and 53.4 Myr ago, with wellreplicated stomatal index counts from fossil Ginkgo adiantoides cuticles (Royer et al., 2001b). Calibration of the fossil Ginkgo stomatal records using the nonlinear function derived from observations on herbarium leaves and experiments (Eqn 2, Table 3) yields atmospheric CO₂ concentrations of between 300 ppm and 450 ppm during the Palaeocene and early Eocene (Fig. 8a) (Royer et al., 2001b). These estimates are towards the lower end of the CO₂ range predicted by geochemical models (Tajika, 1998; Berner & Kothavala, 2001; Wallmann, 2001) and calculated from palaeosols (Ekart et al., 1999). Estimates from boron isotopes are very much higher, in the range 1000-4000 ppm (Pearson & Palmer, 2000), and not generally consistent with any other evidence (Royer et al., 2001a,b). However, this CO₂ proxy may be compromised by the varying global riverine input influencing the marine boron isotopic budget in a manner previously unrealized (Lemarchand et al., 2000). When the fossil Ginkgo stomatal index records are calibrated with the second nonlinear function (Eqn 3, Table 3), the resulting palaeo-CO₂ estimates are generally rather close to those obtained previously (Fig. 8b).

Fig. 8 Atmospheric CO₂ concentrations reconstructed for the early Tertiary from (a) the stomata index of fossil *Ginkgo* cuticles (Royer *et al.*, 2001b) calibrated with two non-linear functions fitted to observations (closed circles, S cal. 1 = Eqn 2b; open circles, S cal. 2 = Eqn 3b, Table 3). Also shown, for comparison, are CO₂ estimates from palaeosols (open triangles) (Ekart *et al.*, 1999), boron isotopes (closed triangles) (Pearson & Palmer, 2000) and the range for 50–60 Myr ago predicted by geochemical modelling of the long-term carbon cycle (Tajika, 1998; Berner & Kothavala, 2001; Wallmann, 2001). In (b) the stomatal and palaeosol data are displayed from (a), but with an expanded CO₂ axis to show the close similarity of CO₂ estimates from stomata using the two nonlinear transfer functions. (c) Comparison of reconstructed CO₂ levels from the stomatal ratio approach using two calibrations (open squares, SR1 = Eqn 5c; closed squares, SR² = Eqn 4c, Table 3) with those in (b).

We note that the stomatal ratio approach, calibrated to $1SR = 1RCO_2$, yields quantitative results that are very compatible with the other two sets of predictions (Fig. 8c). This suggests that even though SR responses are calibrated against fossil, rather than on modern plants, they nevertheless provide a useful technique for estimating palaeo- CO_2 levels. The alternative calibration gives CO_2 estimates higher than all three of the previous transfer functions considered here (Fig. 8c) but these, nevertheless, remain within the bounds suggested by geochemical modelling of the long-term carbon cycle. The principal drawback with the approach is that is not completely independent of carbon cycle model predictions (Royer *et al.*, 2001a).

The different palaeo-CO2 reconstructions can usefully be considered in the context of independent palaeoclimate records to determine the contribution of atmospheric CO2related 'greenhouse' effect to the climate at the time. Deep-sea oxygen isotope records from a range of low- and high-latitude sites indicate that ocean temperatures were some 4°C warmer between 50 and 60 Myr ago (Shackleton & Boersma, 1981; Shackleton, 1986). A more recent compilation of global deep-sea isotope records suggests even warmer temperatures (8-12°C) for this interval (Zachos et al., 2001). Near-surface terrestrial mean annual air temperatures (MATs) have been reconstructed from leaf margin analyses of western North American plant fossil assemblages at several sites in Wyoming, including the Bighorn basin (Wilf, 2000). During the late Palaeocene (59-55 Myr ago), MATs were reconstructed to be 10-16°C, while the early Eocene (55-50 Myr ago) was even warmer, with MATs between 15°C and 20°C. Against a modern MAT for that area of c. 7°C (Müller, 1982), the fossil plants clearly signal a time of extreme warmth between 60 Myr and 50 Myr ago, in agreement with the marine records (Zachos et al., 2001).

Mean (\pm SE) reconstructed atmospheric CO₂ concentrations over the entire period encompassed by all 18 samples for the two nonlinear calibrations were 338 ± 10 ppm CO₂ (without fossil data) and 377 ± 30 ppm CO₂ (with fossil data), respectively. These compare with 343 ± 13 ppm CO₂ and 685 ± 27 ppm CO_2 for the 1SR = 1RCO₂ and 1SR = 2RCO₂ functions, respectively. Based on the logarithmic relationship between global temperature and atmospheric CO₂ concentrations (Kothavala et al., 1999), the upper and lower atmospheric CO₂ concentrations of all approaches would raise the Earth's global mean temperature by between 0.5°C and 2.2°C, respectively, both being insufficient to account to the warm early Tertiary climate. Clearly, although the absolute values of CO₂ estimated from fossil stomata are sensitive to the type of calibration curve employed (Fig. 8), the key conclusion remains that other climate-forcing mechanisms must have operated 50-60 Myr ago. In particular, atmospheric CH₄ concentration, land surface albedo and ocean heat transport may all have played major, but not mutually exclusive, roles (Valdes, 2000).

Acknowledgements

We thank Colin Osborne and Ian Woodward for helpful comments on the manuscript. DJB gratefully acknowledges funding through a Royal Society University Research Fellowship and the Leverhulme Trust, and DLR, an NSF graduate Research Fellowship.

References

- Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. *Philosophical Magazine* 41: 237–279.
- Beerling DJ. 1999. Stomatal density and index. Theory and application. In: Jones TP, Rowe NP, eds. *Fossil plants and spores: modern techniques*. London, UK: Geological Society of London.
- Beerling DJ, Chaloner WG. 1993. Evolutionary responses of stomatal density to global CO₂ change. *Biological Journal of the Linnean Society* 48: 343–353.
- Beerling DJ, Chaloner WG. 1994. Atmospheric CO₂ changes since the last glacial maximum: evidence from the stomatal density record of fossil leaves. *Review of Palaeobotany and Palynology* 81: 11–17.
- Beerling DJ, Osborne CP. 2002. Physiological ecology of Mesozoic polar forests in a high CO₂ environment. *Annals of Botany* (In press.)
- Beerling DJ, McElwain JC, Osborne CP. 1998. Stomatal responses of the 'living fossil' *Ginkgo biloba* to changes in atmospheric CO₂ concentrations. *Journal of Experimental Botany* 49: 1603–1607.
- Beerling DJ, Osborne CP, Chaloner WG. 2001. Evolution of leaf-form in land plants linked to atmospheric CO₂ decline in the Late Palaeozoic era. *Nature* 410: 352–354.
- **Berner RA. 1994.** GEOCARB II: a revised model of atmospheric CO₂ over Phanerozoic time. *American Journal of Science* **294**: 56–91.
- Berner RA. 1997. The rise of plants and their effect on weathering and atmospheric CO₂. *Science* 276: 544–546.
- Berner RA, Kothavala Z. 2001. GEOCARB III: a revised model of atmospheric CO₂ over Phanerozoic time. *American Journal of Science* 301: 182–204.
- Bettarini I, Vaccari FP, Miglietta F. 1998. Elevated CO₂ concentrations and stomatal density: observations from 17 plant species growing in a CO₂ spring in central Italy. *Global Change Biology* 4: 17–22.
- Cerling TE. 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. *American Journal of Science* 291: 377–400.
- **Cerling TE. 1992.** Use of carbon isotopes in paleosols as an indicator of the p(CO₂) of the paleo-atmosphere. *Global Biogeochemical Cycles* **6**: 307–314.
- Chaloner WG, McElwain JC. 1997. The fossil plant record and global climatic change. *Reviews of Palaeobotany and Palynology* 95: 73–82.
- Chamberlin TC. 1898. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. *Journal of Geology* 7: 545–584.
- Crowley TJ, Berner RA. 2001. CO₂ and climate change. *Science* 292: 870–872.
- Ditlevsen PD, Svensmark H, Johnsen S. 1996. Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods. *Nature* 379: 810–812.
- Edwards D. 1998. Climate signals in Palaeozoic land plants. *Philosophical Transactions of the Royal Society, London* **353**: 141–157.
- Ekart DD, Cerling TE, Montanez IP, Tabor N. 1999. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. *American Journal of Science* 299: 805–827.
- Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Rosenthal Y,

Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: a test of our knowledge of the Earth as a system. *Science* 290: 291–296.

- Fernandez MD, Pieters A, Donso C, Tezara W, Azkue M, Herrera C, Rengifo E, Herrera A. 1998. Effects of a natural source of very high CO₂ concentration on leaf gas exchange, xylem water potential and stomatal characteristics of plants of *Spatiphylum cannifolium* and *Bauhinia multinervia. New Phytologist* 138: 689–697.
- Fischer H, Wahlen M, Smith J, Mastroianna D, Deck B. 1999. Ice core records of atmospheric CO₂ around the last three terminations. *Science* 283: 1712–1714.
- Freeman KH, Hayes JM. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO₂ levels. *Global Biogeochemical Cycles* 6: 185–198.
- Gray JE, Holroyd GH, van der Lees FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM. 2000. The HIC signalling pathway links CO₂ perception to stomatal development. *Nature* 408: 713–716.
- Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Mastroianni D, Tschumi J, Blunier T, Meyer R. 1999. Holocene carbon-cycle dynamics based on CO₂ trapped in ice at Taylor Dome, Antarctica. *Nature* 398: 121–126.
- Koch PL, Zachos JC, Gingerich PD. 1992. Correlation between isotope records in marine and continental reservoirs near the Palaeocene/Eocene boundary. *Nature* 358: 319–322.
- Koch PL, Zachos JC, Dettman DL. 1995. Stable isotope stratigraphy and paleoclimatology of the Paleocene Bighorn Basin (Wyoming, USA). *Palaeography, Palaeoclimatology, Palaeoecology* 115: 61–89.
- Kothavala Z, Oglesby RJ, Saltzman B. 1999. Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO₂. *Geophysical Research Letters* 26: 209–212.
- Lemarchand D, Gaillardet J, Lewin E, Allegre CJ. 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. *Nature* 408: 951–954.
- Lloyd J, Farquhar GD. 1996. The CO₂ dependence of photosynthesis, plant growth responses to elevated atmospheric CO₂ concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. *Functional Ecology* 10: 4–32.
- Lloyd J, Grace J, Miranda AC, Miranda HS, Meir P, Wong SC, Gash JHC, Wright IR. 1995. A simple calibrated model of Amazonian rainforest productivity based on leaf biochemical properties. *Plant, Cell & Environment* 18: 1129–1145.
- Madsen E. 1973. Effects of CO₂ concentrations on the morphological, histological and cytological changes in tomato plants. *Acta Agricultuae Scandinavica* 23: 241–246.
- McElwain JC. 1998. Do fossil plants signal palaeoatmospheric CO₂ concentration in the geological past? *Philosophical Transactions of the Royal Society, London* 353: 83–96.
- McElwain JC, Chaloner WG. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. *Annals of Botany* 76: 389–395.
- McElwain JC, Beerling DJ, Woodward FI. 1999. Fossil plants and global warming at the Triassic–Jurassic boundary. *Science* 285: 1386–1390.
- Mitchell RAC, Theobald JC, Parry MAJ, Lawlor DW. 2000. Is there scope for improving balance between RuBP-regeneration and carboxylation capacities in wheat at elevated CO₂? *Journal of Experimental Botany* 51: 391–397.
- Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM. 2001. Atmospheric CO₂ over the last glacial termination. *Science* 291: 112–114.
- Müller MJ. 1982. Selected climatic data for a global set of standard stations for vegetation science. The Hague, The Netherlands: Dr Junk Publishers.
- Neftel A, Oeschger H, Staffelbach T, Stauffer BR. 1988. CO₂ record in the Byrd ice core 50 000–5 000 years B.P. *Nature* **315**: 609–611.
- Pagani M, Freeman KH, Arthur MA. 1999. Late Miocene atmospheric CO₂ concentrations and the expansion of C4 grasses. *Science* 285: 876–879.

Pearson PH, Palmer MR. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. *Nature* 406: 695–699.

- Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420 000 years from the Vostok ice core. *Antartica. Nature* 399: 429–436.
- Raschi A, Miglietta F, Tognetti R, van Gardingen PR. 1997. Plant responses to elevated CO₂. Evidence from natural springs. Cambridge, UK: Cambridge University Press.
- Raven JA, Edwards D. 2001. Roots: evolutionary origins and biogeochemical significance. *Journal of Experimental Botany* 52: 381–401.
- Retallack GJ. 2001. A 300 million-year record of atmospheric carbon dioxide from fossil plant cuticles. *Nature* 411: 287–290.
- Royer DL. 2001. Stomatal density and stomatal index as indicators of atmospheric CO₂ concentration. *Review of Palaeobotany and Palynology* 114: 1–28.
- **Royer DL, Berner RA, Beerling DJ. 2001a.** Phanerozoic atmospheric CO₂ change: evaluating geochemical and paleobiological approaches. *Earth-Science Reviews* **54**: 349–392.
- Royer DL, Wing SC, Beerling DJ, Jolley DW, Koch PL, Hickey LJ, Berner RA. 2001b. Palaeobotanical evidence for near present-day levels of atmospheric CO₂ during part of the Tertiary. *Science* 292: 2310–2313.
- Rundgren M, Beerling D. 1999. A Holocene CO₂ record from the stomatal index of subfossil *Salix herbacea* L. leaves from northern Sweden. *The Holocene* 9: 509–513.
- Shackleton NJ. 1986. Palaeogene stable isotope events. Palaeography, Palaeoclimatology, Palaeoecology 57: 91–102.
- Shackleton NJ. 2000. The 100 000 year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. *Science* 289: 1897–1902.
- Shackleton NJ, Boersma A. 1981. The climate of the Eocene ocean. Journal of the Geological Society of London 138: 153–157.
- Tajika E. 1998. Climate change during the last 150 million years: reconstruction from a carbon cycle model. *Earth and Planetary Science Letters* 160: 695–707.

- Thomas JF, Harvey CH. 1983. Leaf anatomy of four species grown under continuous CO₂ enrichment. *Botanical Gazette* 144: 303–309.
- Tichá I. 1982. Photosynthetic characteristics during ontogenesis of leaves. 7. Stomatal density and sizes. *Photosynthetica* 16: 375–471.
- Tissue DT, Griffin KL, Thomas RB, Strain BR. 1995. Effects of low and elevated CO₂ on C3 and C4 annuals. II. Photosynthesis and leaf biochemistry. *Oecologia* 101: 21–28.
- Tralau H. 1968. Evolutionary trends in the genus *Ginkgo. Lethaia* 1: 63–101.

Valdes PJ. 2000. Warm climate forcing mechanisms. In: Huber BT, MacLeod KG, Wing SL, eds. Warm climates in earth history. Cambridge, UK: Cambridge University Press, 3–20.

- Veizer J, Godderis Y, Francois LM. 2000. Evidence for decoupling of atmospheric CO₂ and global climate during the Phanerozoic eon. *Nature* 408: 698–701.
- Wallmann K. 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO₂ and climate. *Geochimica et Cosmochimica Acta* 65: 3005–3025.
- Ward JK, Strain BR. 1997. Effects of low and elevated CO₂ partial pressure on growth and reproduction of *Arabidopsis thaliana* from different elevations. *Plant, Cell & Environment* 20: 254–260.
- Ward JK, Antonovics J, Thomas RB, Strain BR. 2000. Is atmospheric CO₂ a selective agent on model C3 annuals? *Oecologia* 123: 330–341.
- Wilf P. 2000. Late Paleocene–early Eocene climate changes in southwestern Wyoming: paleobotanical analyses. *Geological Society of America Bulletin* 112: 292–307.

Wing SL, Bao H, Koch PL. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. In: Huber BT, MacLeod KG, Wing SL, eds. *Warm climates in earth history*. Cambridge, UK: Cambridge University Press, 197–237.

- Woodward FI. 1987. Stomatal numbers are sensitive to increases in CO₂ from pre-industrial levels. *Nature* 327: 617–618.
- Woodward FI, Bazzaz FA. 1988. The responses of stomatal density to CO₂ partial pressure. *Journal of Experimental Botany* 39: 1771–1781.
- Zachos JC, Pagani M, Sloan LC, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climates 65 Ma to present. *Science* 292: 686–693.

About New Phytologist

- New Phytologist is owned by a non-profit-making charitable trust dedicated to the promotion of plant science. Regular papers, Letters, Research reviews, Rapid reports and Methods papers are encouraged. Complete information is available at www.newphytologist.com
- All the following are **free** essential colour costs, 100 offprints for each article, online summaries and ToC alerts (go to the website and click on Synergy)
- You can take out a **personal subscription** to the journal for a fraction of the institutional price. Rates start at £83 in Europe/\$133 in the USA & Canada for the online edition (go to the website and click on Subscriptions)
- If you have any questions, do get in touch with Central Office (**newphytol@lancaster.ac.uk**; tel +44 1524 594691) or, for a local contact in North America, the USA Office (**newphytol@ornl.gov**; tel 865 576 5251)